COMPUTER SIMULATION OF SPLIT INTERSTITIAL EQUILIBRIUM POSITIONS AND BINDING ENERGIES IN A TUNGSTEN CRYSTAL

James Anthony Tankovich

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93943-5002

NAVAL POSTGRADUATE SCHOOL Monterey, California

June 1972

Approved for public release; distribution unlimited.

```
Computer Simulation of Split Interstitial
Equilibrium Positions and Binding Energies
                in a Tungsten Crystal
                    by
                James Anthony Tankovich
            Captain, United 'States Army
B.S., United States Military Academy, 1967
Submitted in partial fulfillment of the
    requirements for the degree of
            MASTER OF SCIENCE IN PHYSICS
                    from the
            NAVAL POSTGRADUATE SCHOOL
                    June l972
```


Abstract

Computer simulations were performed to locate the equilibrium positions and binding energies of interstitial $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}$, and Xe atoms in a tungsten crystal. Heavy interstitial atoms in tungsten share a lattice site with the atom that normally occupies that site and form what is called a split interstitial. Three characteristic interstitial sites were located relative to each lattice site tested. The distance of the impurity atom from the site was seen to vary roughly inversely with its mass, and the displacement of the lattice atom increased with the mass of the impurity atom. The foreign atom in its interstitial position was tested to determine the minimum initial kinetic energy needed to escape the lattice, as well as the optimum escape direction. The minimum energy may be interpreted to be the binding energy of the defect. A comparison of experimental binding energies from Kornelsen and Sinha and simulated binding energies indicates the model gives realistic results.

I. INTRODUCTION -8
II. NATURE OF THE PROBLEM -9
A. HISTORICAL BACKGROUND- -9
B. CHOICE OF POTENTIAL FUNCTION 12
C. EXPERIMENTAL RESULTS OF KORNELSEN AND SINHA 14
III. SIMULATION MODEL 15
A. THE CRYSTAL- 15
B. THE TIMESTEP INTERVAL 16
IV. SIMULATION PROCEDURE 18
A. STATIC SIMULATION- -18
B. DYNAMIC SIMULATION- 20
V. PRESENTATION OF DATA- 22
A. STATIC RUNS- -22

1. Preliminary Testing of the Static Program --22
2. Positions for Helium in Tungsten- -23
3. Positions for Neon in Tungsten -24
4. Positions for Argon in Tungsten- -24
5. Positions for Krypton in Tungsten- -34
6. Positions for Xenon in Tungsten $-34$7. Distance Ratios as a Function of RelativeMasses39
B. DYNAMIC RUNS 391. Survey of the Possible Directions of EscapeFor the Ar-W Simulated Split Interstitialin Site A-8939
7. Determination of Simulated Binding Energy

VI. CONCLUSIONS - 43
APPENDIX A: COMPUTER PROGRAM GLOSSARY 45
COMPUTER PROGRAM 52
BIBLIOGRAPHY 65
INITIAL DISTRIBUTION LIST 67
DD FORM 1473 68

LIST OF TABLES

I. Theoretical and Simulated Split Interstitial

Distance Ratios---40

LIST OF FIGURES

1. Split Interstitial Sites for $B C C$ Tungsten
2. A, C Sites for Atoms 64, 114 - Helium-Tungsten----------25
3. A,C Sites for Atoms 89, 139 - Helium-Tungsten-----------26
4. B Sites for Atoms 64, 89, 114, 139-Helium-Tungsten---27
5. A, C Sites for Atoms 64, 114 - Neon-Tungsten-------------28
6. A,C Sites for Atoms 89, 139 - Neon-Tungsten----------29
7. B Sites for Atoms 64, 89, 114, 139 - Neor-Tungsten-----30
8. A,C Sites for Atoms 64, 114 - Argon-Tungsten-----------31
9. A,C Sites for Atoms 89, 139 - Argon-Tungsten-----------32
10. B Sites for Atoms 64, 89, 114, 139-Argon-Tungsten----33
11. A,C Sites for Atoms 64, 114 - Krypton-Tungsten---------35
12. A,C Sites for Atoms 89, 139 - Krypton-Tungsten---------36
13. B Sites for Atoms 64, 89, 114, 139 - Krypton-Tungsten--37

14. Impact Area - Dynamic Simulation of Escape Directions for Argon in Site A-89-------------------------------------41

ACKNOWLEDGEMENT

I wish to express my appreciation to Prof. Don E. Harrison, Jr., for his guidance and understanding during this project. I also wish to thank my wife, Margaret Ann, for her perserverence throughout the project and for her help in preparing the figures used in the text.

I. INTRODUCTION

The advent of modern, high speed digital computers has led to the application of computer simulation techniques to many different types of physical systems. One such application is the modeling of the situation that occurs when a foreign atom interacts with a metallic crystal lattice. In general, such modeling can be broken down into two basic areas, dynamic simulation and static simulation. As an example of the former, radiation damage has been studied by the simulated firing of an atom or ion onto a crystal face. Other examples are sputtering simulations $[1,2,3]$ in which the incoming particle causes surface atoms to be ejected; and channeling simulations [4] in which the ranges of ions travelling in crystal lattices are calculated. Static simulations, on the other hand, have been concerned with the equilibrium positions in the lattice after point defects such as replacement atoms, interstitial atoms, and vacancies have been introduced. Examples of this type of simulation can be found in $[5,6,7]$. This present research utilized aspects of both static and dynamic simulation techniques. The goal of this research was to correlate the results of experimentally determined binding energies of point defects in a tungsten lattice $[8,9]$ with the results obtained by computer simulation.

II. NATURE OF THE PROBLEM

A. HISTORICAL BACKGROUND

An investigation of radiation damage events by computer simulation techniques of crystalline behavior was published in 1960 by Gibson, Goland, Milgram, and Vineyard, hereafter referred to as (GGMV) [5]. This Brookhaven National Laboratory investigation set forth the criteria that must be satisfied before the simulation method could be applied to crystals. Such factors as potential energy functions, forces, crystallite sizes, computation methods, choice of time intervals, and computer limitations were discussed. The crystal lattice modeled in their research was metallic copper, a face-center cubic (fcc) structure. The potential functions used in the calculations was a Born-Mayer repulsive potential, with the necessary cohesive forces applied on the boundries of the crystallite. In integrating the equations of motion, the Brookhaven group used the central difference procedure. The optimum choice for timestep duration, Δt, was shown to be of critical importance in the integration scheme. The energy of the strongest interaction governed their choice of the above parameter. The static results obtained by GGMV confirmed the existance of the 〈100〉 split interstitial in the fcc lattice. Their dynamic results described collision chains and focusing phenomena in crystallites struck with energetic knock-on atoms.

Additional crystal simulation studies were performed by
R.A. Johnson $[6,10,11]$. In Ref. 6, he investigated point defects in a copper lattice using Born-Mayer repulsive potentials. The

〈100〉 split interstitial was found to be the only stable inter－ stitial position．He found it necessary to allow the interstitial to interact only with its six nearest neighbors．Atoms near the defect were treated as independent，while the remainder of the metal was treated as an elastic continuum with atoms imbedded in it．

Research on body－centered cubic（bcc）crystals was undertaken by Erginsoy，Vineyard，and Englert（EVE）［7］．They used a com－ posite potential function for most of their detailed work．It consisted of an exponentially screened Coulomb potential at small separations，a Born－Mayer function in the region between small and intermediate separations，and a Morse potential at larger separation distances．A split interstitial was reported for simu－ lated bcc crystals in the 〈110〉 direction．In their dynamic re－ sults they reported the existence of a threshold energy for displacement that was highly independent of the direction of knock－on．Also，collisional chains in the 〈111〉 and 〈100〉 direc－ tions were found to exist．R．A．Johnson also published results for bcc simulations involving α－iron and tungsten［11］．The existence of the split interstitial in the 〈110〉 direction was confirmed and crowdian migration data were discussed．The present investigation confirmed the 〈110〉 split interstitial positions for argon，neon，krypton，and xenon．

D．E．Harrison and associates have published several articles in which computer simulation of crystalline behavior has been investigated $[1,2,12]$ ．In a study of a fcc model of copper，col－ lision events between a copper atom and a copper lattice were
simulated as a function of the potential function, the enegy of the collision, and the location of the impact point. The integration scheme used was an average force procedure, instead of the central difference procedure used by GGMV. A complete discussion of the method can be found in Ref. 13. A continuation of copper simulations was published by Harrison, Leeds, and Gay in 1965 [12]. Another paper by Harrison and Greiling dealt with the ranges of heavy ions in tungsten crystals whose atoms had undergone thermal displacement [4]. It was found that room temperature thermal displacements had a negligible effect upon the collisions for ion energies greater than a few thousand electron volts. Finally, Harrison, Levy, Johnson, and Effron published results on computer simulation of sputtering [2].

Research undertaken by Vine [14] provided the foundation for this author's present investigation. Vine used the Gay-Harrison model for crystal simulation as modified by Levy $[15]$, Johnson $[16]$, Effron [17], and Moore [18]. His overall objective was to correlate experimental and simulated binding energies of neon and argon point defects. Repulsive potential functions for neontungsten ($\mathrm{Ne}-W$) and argon-tungsten (Ar-W) interactions were used [19]. Morse functions were not used for those interactions because experimental data giving the Morse parameters was based on homogeneous media such as tungsten-tungsten ($W-W$) interactions [20]. Vine subsequently attempted to correlate results of equilibrium position studies for tungsten defects in a tungsten lattice using two different potential functions for the interstitial-lattice interactions. In one case, the tungsten interstitial was allowed
to interact using a Born-Mayer repulsive potential, and the other case, the tungsten defect was given a composite potential that was identical to that given to all the other lattice atoms. By so doing, he attempted to establish an empirical relationship between the two methods to apply to the results of neon interstitial studies which used only a repulsive potential.

The results of the tungsten-tungsten interactions failed to provide the information needed to formulate a correction factor to be used in the neon-tungsten studies. In addition, the concept of relating the potential energy at equilibrium to the experimentally observed binding energies of Kornelsen and Sinha [9] does not appear to be feasible.

B. CHOICE OF POTENTIAL FUNCTION

The studies that were reviewed in the previous section utilized many different approximations to the true potential function between atoms in a metal lattice. The problem of solving the manybody interaction of a real system is approximated in the computer by many two-body interactions. Thus, central pairwise potential functions are most often used in computer simulations. GGMV employed a repulsive potential of the Born-Mayer form:

$$
v_{i j}=\exp \left(A+B r_{i j}\right)
$$

which described the repulsion of atoms at close approach. Three Born-Mayer potentials were investigated by GGMV to determine which would give the best results in their calculations. Their choice was one which has since been labeled the Gibson Number Two Potential. In Ref. 6, Johnson and Brown used a similar Born-Mayer potential
with slightly different parameters. As previously mentioned, another potential function that has been used in crystal model ing studies is the familiar Morse potential of the form:

$$
\Phi_{i j}=D\left[\exp \left\{-2 \alpha\left(r_{i j}-r_{\theta}\right)\right\}-2 \exp \left\{-\alpha\left(r_{i j}-r_{\theta}\right)\right\}\right]
$$

where r_{θ} is the equilibrium distance of approach of two atoms, and α and D are constants.

Girifalco and Weizer calculated Morse parameters that would be appropriate for several crystal lattices [20]. In calculating the parameters, they attempted to express the various crystal properties such as cohesive energy, lattice constant, compressibility and equation of state in terms of the Morse function. The Morse potential constants published by Girifalco and Weizer have been used extensively in simulating the potential functions and forces in lattices of homonuclear atom systems.

The Born-Mayer potential and the Morse potential are useful over specific internuclear separation distances. The Born-Mayer potential is useful at strongly repulsive separations, i.e. short ranges, while the Morse function is applicable at equilibrium and greater separations. In order to better approximate the true potential function, various investigators have combined different potential functions. As mentioned earlier, EVE [7] used a composite potential that consisted of an exponentially screened Coulomb potential at very close separations, a Born-Mayer potential at weakly repulsive distances, and a Morse potential over the remainder of the potential curve. In their studies, Harrison and associates combined a Born-Mayer potential and a Morse
potential. These two potentials were joined by a cubic equation in the region near their intersection $[1,2,3,4]$.
C. EXPER IMENTAL RESULTS OF KORNELSEN AND SINHA

In 1968, Kornelsen and Sinha $[7,8]$ published results concerning the binding energies of trapped particles such as neon, argon, krypton, and xenon ions in a tungsten surface. The particles were forced into the surface from a beam created by an ion gun which gave ion energies of 40 eV to 5 keV . The tungsten crystal was then heated and the rates of evolution of the trapped gas were measured.

The temperature at which desorption peaks occured thus gave an indication of the binding energies of point defects in the tungsten crystal. Quantitatively similiar results were obtained with argon, krypton, neon, and xenon ions. Four peaks were observed below $1650{ }^{\circ} \mathrm{K}$ and were labeled as α peaks. A single peak above $1700{ }^{\circ} \mathrm{K}$ was measured and was called the β-peak. It was concluded that the α-group of peaks were the results of single step desorptions from sites very close to the metal surface. They further concluded that the different α-peaks could correspond to different types of point defect binding energies in the tungsten crystal. Specifically mentioned were defects of three types;
(a) interstitial and substitutional positions in the lattice, (b) different distances from the site to the surface, and (c) different locations of a nearby lattice defect, such as a vacancy, relative to the site and the surface.

A. THE CRYSTAL

The model used in this research was essentially the same one used by Vine [14] as explained in Section II. In subsequent discussion, when it is necessary to specify certain of the computer program variable names, they will be placed in braces.

All of the simulations in this research were done with tungsten crystals of varying sizes. The objective was to use the smallest crystal dimensions that would give realistic results. The dimensions described below refer to the number of planes of atoms in each of the three rectangular coordinate directions. Simulations were performed with sizes $8 \times 6 \times 8$ of 96 atoms, $10 \times 6 \times 10$ of 150 atoms, $10 \times 8 \times 10$ of 200 atoms, and $10 \times 10 \times 10$ of 250 atoms. Of these, the latter two were judged to be of most use because of their greater depth in the y-direction. The y direction was always used as the direction of escape for the point defect atom.

Each atom in the simulated crystal was numbered, with the first position always assigned to the point defect atom. The remainder of the positions were assigned in sequence according to the coordinate locations. The numbering was started in the $y=0$ plane and continued until all the atoms in that plane were specified. This procedure was repeated for the remainder of the y planes in the simulated crystal.
B. THE TIMESTEP INTERVAL

The numerical method of time integration used in the model was the average force method [13]. The value of $\Delta t\{D T\}$ used in this procedure was of critical importance in determining whether or not the model would approximate reality. Also, the program running time was a function of the timestep duration.

In order to best approximate reality, the $\{D T\}$ was kept smaller early in the program when most movement was expected, and was allowed to grow larger as equilibrium was approached. The parameter that controlled the timestep duration was \{DTI\}, the distance which the most energetic atom was allowed to move in a single timestep. In previous work, \{DTI\} was held constant throughout the duration of a program. If the motion was expected to be slow, \{DTI\} was given a larger value than in a situation where simulated motion was expected to be greater. For static equilibrium problems, at least 100 timesteps were needed to reach an approximately stable position. In addition, it became necessary to insert a maximum value for the timestep, \{DT\}, into the program to prevent unrealistic movement of the atoms and breakdown of the model.

In the current program, changes were made to allow \{DTI\} to decrease during the program. For example, in static runs on $\mathrm{He}-\mathrm{W}$, Ne-W, $\cdot \mathrm{Ar}-\mathrm{W}$, and $\mathrm{Kr}-\mathrm{W},\{\mathrm{DTI}\}$ was initially given a value of 0.1 lattice unit \{LU\}. Tungsten forms a bcc crystal, with LU equal to $\frac{1}{2}$ LC or $1.58 \AA$, where LC is the Lattice Constant or cube edge distance. \{DTI\} was allowed to change in decrements of 0.01 LU per timestep for the first 10 timesteps. Then the $\{D T I\}$ value of 0.01 LU was allowed to change in decrements of .001 LU for
another 10 timesteps. Equilibrium was reached by 30 timesteps according to this procedure, resulting in a significant decrease of computer running time. Also, the equilibrium positions obtained in the simulation were closer to the expected〈llo〉 split interstitial positions than were obtained with a constant \{DTI\} value.

IV．SIMULATION PROCEDURE

A．STATIC SIMULATIONS

The first stage of the simulation procedure was concerned with finding the equilibrium positions for the point defect of interest in the top several layers of a bcc tungsten crystal．Previous work done by Johnson［11］，indicated that a bcc crystal had at least two different types of stable split interstitial orientations． The first of these was in a 〈100〉 direction along a（110）plane． The other stable orientation was in a 〈110〉 direction in a（100） plane．An analysis of the total of 12 stable split interstitial positions possible about a given atom in the two orientations listed above，revealed that there were only three independent types of sites．（See Figure 1．）The first of these is located on a （110）plane with \｛NVAC\} and lies closer to the surface than \{NVAC\}. The second independent position lies in the same（100）plane as \｛NVAC\} and is at the same depth in the crystal. A final position similar to the first，in that it is along a（ll0），is located at a depth below that of $\{N V A C\}$ ．The three different split inter－ stitials were postulated to have different binding energies be－ cause of their varying depths in the crystal．

In order to reduce the running time in locating the final coordinate positions at each interstitial location，the static programs were started with the foreign atoms in the approximate area of the expected final positions as．discussed above．For

Figure 1
SPLIT INTERSTITIAL SITES FOR BCC TUNGSTEN

example, when it was desired to locate position A, the foreign atom was initially placed along the correct (ll0) plane approximately one lattice unit from \{NVAC\}.
B. DYNAMIC SIMULATIONS

The dynamic simulation program used the final positions computed in the static programs as input initial crystal positions. The lattice generator subroutine $\{B 100\}$, and the point defect locator \{PLACE\} were thus eliminated from the dynamic program.

Dynamic simulations were broken down into two main categories.
The first category consisted of survey runs of the areas above the interstitials in the direction of escape from the y surface. An impact point generator package was inserted into the dynamic program, thus permitting the interstitial to be directed at a specific number of locations in a predefined area. The results of the survey run were analyzed to determine the optimum aiming point for the interstitial at a specific initial energy. It was observed during the impact testing precedure that the "best" aiming points were a function of the initial energy given to the interstitial. However, it was also found that the optimum aiming points at varying energies were in a generally localized area. Thus, once the optimum points were found at the starting energy, only a localized region around those points was tested at lower initial interstitial energies. The decrementing process of the initial interstitial energy constituted the second main phase of the dynamic simulations. The procedure in this phase was to decrease the interstitial energy until it could no longer escape
from the crystal. The minimum escape energy was said to be the simulated binding energy of the interstitial at the particular location tested.

v. PRESENTATION OF DATA

A. STATIC RUNS

1. Preliminary Testing of Static Program

One hundred twelve computer runs were made in the initial testing phase of the static program. The bulk of the testing was done in four general areas: 1) Program shutdown procedures at equilibrium; 2) Optimum crystal size determination; 3) Equilibrium position as a function of the initial interstitial position; and 4) Realistic timestep determination procedure.

The best method of stopping the program at equilibrium has been a matter of concern for many years with the static simulation program. In the present investigation, the first method tested was a shutdown procedure initiated whenever a sharp \{DT\} decrease was encountered in the program. This test proved to be of limited success, and was later abandoned. Another method that was attempted was a test of $\{$ EMAX $\}$ against a value such as .04 , to determine if equilibrium had been reached. This method also proved only partially successful. Finally, a test was made of the average kinetic energy of an atom in the simulated crystal. The average energy was taken to be the total kinetic energy \{TPKE\} divided by the number of atoms \{LL\}, or equivalently, \{TPKE\} multiplied by the reciprocal of the number of atoms \{RLL\}. The crystal was assumed to be at equilibrium if the average kinetic energy of an atom was less than or equal to the value 0.025 eV , a value for the average thermal energy of an atom. Satisfactory results were
sometimes obtained by this method but the test had to be removed in many cases to allow the simulated crystal to run a greater number of timesteps and reach equilibrium.

As previously mentioned, different sizes of crystals were simulated to determine the optimum dimensions for the crystallite. Many tests were made on crystal sizes smaller than the $10 \times 10 \times 10$ used by Vine [14]. Although smaller sizes such as $10 \times 6 \times 10$ often gave reliable results, it was finally decided to use the $10 \times 10 \times 10$ size for the reported split interstitial positions in order to have a standard size applicable over all crystal positions of interest.

In his work, Vine placed his interstitials in the middle of the open channels in the simulated crystal. Numerous runs in the present research have indicated that equilibrium is reached more quickly when the initial starting positions are not in channel centers, but along the directions of the expected splits in the general area of the final positions.

All of the initial work was done with a fixed \{DII\} value in the program. The $\{D T I\}$ value normally used was .05 LU . The timestep interval was later modified as explained in The Simulation Model and the computer running time was cut by approximately twothirds due to this procedure.
2. Positions for Helium in Tungsten

Helium was the lightest point defect used in the static simulation model. It was thought that the small, light atom would essentially do all the movement and come to rest in a channel center $\sqrt{2}$ LU away from \{NVAC\} along the 〈110〉 direction. The results of the runs show that the movement was almost as expected.

Also, a comparison of the C site for atom 64 and the A site for atom 114 indicates that there is a strong possibility that these two sites are degenerate. This is based on the fact that the potential energies of both sites are close, and also that the \{NVAC\} for each site is displaced only a negligible distance. The same probability of degeneracy is also seen to exist for C-89 and A-139. The determination of degeneracy of sites is seen to be a complex evaluation of potential energy differences, movements of $\{N V A C\}$, and the potential gradient between the two sites. The final positions for the A, B, and C split interstitial positions in the third, fourth, fifth, and sixth layers where \{NVAC\} was 64, 89, 114, and 139 respectively are shown in Figures 2, 3 and 4. The results obtained with helium were thought to be somewhat in error, since the heavier atom, neon, moved further in its simulations than helium. Further work is needed to confirm the equilibrium positions for helium.

3. Positions for Neon in Tungsten

The neon split interstitial locations were simulated for the same positions as helium. (See Figures 5, 6 and 7.) Essentially, the $\{N V A C\}$ atom remained in its lattice site and the neon moved along a 〈110〉 direction to a distance $\sqrt{2}$ LU away from \{NVAC\}.
4. Positions for Argon in Tungsten

The bulk of the testing of this research was done with argon as the simulated point defect. The results of the runs for the $10 \times 10 \times 10$ crystal size are shown in Figures 8, 9 and 10.

Figure 3

Figure 4
B SITES FOR ATOMS 64, 89, 114, 1.39 HELIUM -

TUNGSTEN' $-\bigcirc$

Figure 5

Figure 6

Figure 7
B SITES FOR ATOMS 64, 89, 114,139 NEON - - TUNGSTEN - \bigcirc

Figure 8

Figure 9

Figure 10
B SITES FOR ATOMS 64, 89, 114, 139 ARGON- TUNGSTEN - \bigcirc

The expected 〈110〉 splits were observed with \｛NVAC\} moving away from its site in relation to the final position of the argon defect．

5．Positions for Krypton in Tungsten
The split interstitial positions for krypton in a simu－ lated tungsten crystal were also plotted．（See Figures 11， 12 and 13．）Once again，satisfactory results were obtained and the〈110〉 splitting was observed．

6．Positions for Xenon in Tungsten
For the Xenon Runs，the tungsten repulsive potential function was used for the xenon potential．The initial runs， using the $\{D T I\}$ employed for the other defects，failed to give the postulated split interstitial positions．At least two factors were seen to complicate the Xenon－Tungsten runs．Firstly，the mass of Xenon was approximately $6 / 7$ that of tungsten，so the lattice site would be shared almost evenly．This would mean that tungsten would have to move a significant distance from its lat－ tice position．Secondly，the relatively large size of the xenon defect would require more movement of the surrounding atoms to accommodate the extra atom．

The \｛DTI\} scheme was changed to allow for more movement of the atoms by allowing $\{D T I\}$ to change in smaller decrements． Another method that was used was an initial displacement of both the xenon and the tungsten away from the lattice site．When both atoms were displaced，it became necessary to use an initial \｛DII\} of .05 LU or less．An average value of the C site for atom 89 was computed．（See Figure 14．）More work is needed to simulate all of the interstitial positions．

Figure 11

Figure 12

Figure 13
B SITES FOR ATOMS 64, 89, 114, 139 KRYPTON - O TUNGSTEN - \bigcirc

Figure 14

7. Split Interstitial Distance Ratios as a Function of

Relative Masses

During the static testing phase, the ratios of the split interstitial distances from the initial \{NVAC\} were measured. An attempt was made to correlate these ratios to the inverse ratios of the atomic masses of the atoms involved. (See Table I.) The point defect results of helium and neon did not give any significant correlation, but the Argon and krypton atoms gave ratios of splits in good agreement with the expected values from mass ratio calculations.
B. DYNAMIC RUNS

1. Survey of the Possible Directions of Escape for the Ar-W

Simulated Split Interstitial in Site A-89
As was mentioned in the Section IV, survey runs were made of the possible escape directions in the plane one LU. above the defect. The results for the survey for the Ar-W split interstitial in site A- 89 were plotted. (See Figure 15.) \{DY\}, the distance in lattice units that the argon moved in 25 timesteps, and $\{V Y\}$, the velocity that the argon had after 25 timesteps are shown for each impact point. Due to the multiple scattering of the defect as it moved toward the surface, 25 timesteps were not sufficient to provide conclusive evidence at any one impact point. The survey was limited to 25 timesteps per impact point, however, due to computer time considerations. The main benefit gained from the survey run was the elimination of certain areas from further testing, such as those on the outer perimeter of the survey area. Also, much information was gained on the most likely area of escape for the

TABLE I

	Theoretical Splits From Lattice Site $\left(\frac{\text { Tungsten Mass }}{\text { Impurity Mass }}\right)$	$\left.\begin{array}{l}\text { Simulated Splits From } \\ \text { Lattice Site } \\ \text { (} \begin{array}{l}\text { Impurity Distance }\end{array} \\ \text { Tungsten Distance }\end{array}\right)$

Figure 15

IMPACT AREA: DYNAMIC SIMULATION OF ESCAPE DIRECTIONS FOR ARGON IN SITE A-89

defect. From the results of the survey run, and from symmetry considerations of the open channel, it was decided to concentrate further testing on several points with the same Z coordinate as the interstitial atom.
2. Determination of the Simulated Binding Energy of Argon

in Site A-89

Detailed testing of several impact points with the same Z coordinate as the argon was carried out for 100 timesteps per impact point. This was generally enough time for the simulated interstitial to escape the crystal it its initial energy was great enough. The results are summarized below.

TABLE II Detailed Impact Point Testing

Impact Points in Plane 1.0 LU in -y direction from Argon	Initial Energy				
	20 eV	10 eV	8 eV	6 eV	4 eV
$\begin{aligned} & c x=3.84 \mathrm{LU} \\ & c z=4.99 \end{aligned}$	Yes	Yes	No	No	No
$\begin{aligned} c x & =4.24 \\ c z & =4.99 \end{aligned}$	Yes	Yes	Yes	Yes	No
$\begin{aligned} & c x=4.44 \\ & c z=4.99 \end{aligned}$	Yes	Yes	Yes	Yes	No
Yes - Atom Escapes Crystal					
No	Atom D	Not Es			

VI. CONCLUSIONS

The method used to decrease \{DTI\} on every timestep appears to be a significant improvement over the old method of keeping \{DTI\} fixed. In effect, the new method forces the simulated crystallite to come to equilibrium in a predefined number of timesteps. In addition to a saving of computer time, this method also eliminates the need for a equilibrium shut down procedure in the program. The same $\{D T I\}$ decrement scheme could not be used for all the point defects tested in this research. For example, Argon and Krypton were able to come to their expected equilibrium positions using the scheme described in Section III, but Xenon and Helium were not. Thus it appears that defect size, as well as the expected degree of movement may dictate the $\{D T I\}$ decrement scheme.

The expected 〈110〉 split interstitials were confirmed for the helium, neon, argon, krypton, and xenon foreign defects. The relative degree of splitting does appear to be related to the masses of the interacting atoms, but conclusive evidence of this was only obtained for the Argon-Tungsten, and Krypton-Tungsten runs.

The dynamic runs have shown the direction of escape from the crystal to be a multi-collisional process, with the defect undergoing many intermediate direction changes at the low kinetic energies tested. The most likely escape direction was also seen to vary somewhat with the initial kinetic energy given to the defect.

The simulated value of approximately 4 eV for the binding energy of Argon in site A-89 appears to be a reasonable value. Kornelsen's data showed an energy level at this value and his levels were postulated to arise from defects in the first several layers of the tungsten crystal.

Further work is needed to confirm the remainder of the energy levels found by Kornelsen, by testing other point defect sites in the top layers of the simulated crystal.

APPENDIX A: COMPUTER PROGRAM GLOSSARY

NOTE: In this glossary, the terms "point defect atom", "bullet", and "primary" are synonymous; and the terms "latttice atom" and "target" are synonymous.

AC: Distance measurement used in impact point generator
ALPHA: Input Morse potential parameter
BSAVE: Target mass/(target mass + bullet mass); distributed potential energy between target and bullet

BIND: Negative of the total potential energy (TPOT) at time zero

BMAS: Mass of bullet in amu
BULLET: Alpha-numeric array for point defect material
CFO, CF1, CF2: Force parameters of cubic fit between Morse and Born-Mayer functions

CGBl, CGB2: Morse potential parameters
CGD1, CGD2: Morse potential parameters
CGFl, CGF2: Morse force parameters
COX, COY, COZ: Cosines of angles to x, y, and z axes respectively
CPO, CP1, CP2, CP3: Potential parameters of cubic fit between
Morse and Born-Mayer functions
CVD: CVR $\times 10^{-10}$, converts lattice units to meters
CVE: 1.6×10^{-19}, converts electron volts to joules
CVED: CVE/CVD, a ratio used to avoid repeated division
CVM: 1.672×10^{-27}, converts atomic mass units to kilograms
CVR: LU in angstroms; converts lattice units to angstrom units

CX, CY, CZ: Coordinates of impact point
DlX, DlY, DlZ: Displacement coordinates for location of interstitial from reference atom, NVAC

DCON: Input Morse potential parameter
DDTI: Time increment that is subtracted from DTI after each timestep

DFF: ROE-DIST, the distance closer than ROE that an atom is to the primary

DIST: Distance between any two atoms
DLPE: TLPE-TLPE \varnothing, the change in total local potential energy since time zero

DRX, DRY, DRZ: x, y, z components of DIST
DT: Length of a timestep in seconds
DII: Number of lattice units most energetic atom may move in one timestep

DTIS: \quad Starting value of DTI.
DTOD: DT/CVD--a ratio used to avoid repeated division
DTOM: DT/PTMAS--a ratio used to avoid repeated division
DTOMB: DT/PEMAS--a ratio used to avoid repeated division
 position at time zero

EMAX: The maximum energy encountered in any cycle
ERAT: Measure of the average kinetic energy of an atom
EV: Primary energy in electron volts
EVR: Primary energy in kilo-electron volts
EXA, EXB: Input Born-Mayer potential function parameters for the target

F2: Square of the force on a specific atom
FA: The component force increment on an atom
FDII: DTI X CVD, a parameter used to determine DT by maximum energy method

FM: A small number used in checking potential energy zero point

FM2: \quad FM squared
FMAX: Maximum total force on the most stressed atom in the crystal

FMAXI: Maximum total force on Atom 1
FOD: FORCE/DIST--a ratio used to avoid repeated division
FORCE: Numerical value of the force function with a variable parameter

FX(I), $F Y(I), F Z(I): x, y, z$ components of total foce on an atom
FXA: Born-Mayer force function parameter
HBMAS: $\frac{1}{2}$ BMAS-- a ratio used to avoid repeated division
HDTOD: $\frac{1}{2}$ DTOD-- a ratio used to avoid repeated division
HDTOM: $\frac{1}{2}$ DTOM-- a ratio used to avoid repeated division
HDTOMB: $\frac{1}{2}$ DTOMB-- a ratio used to avoid repeated division
HTMAS: $\frac{1}{2}$ TMAS-- a ratio used to avoid repeated division
Il: Variable in cubic fit subroutine
13: Variable in cubic fit subroutine
IDEEP: Number of mobile layers
IHI: Alpha numeric array for program title
IH2: Alpha numeric array for Morse function parameters
IHB: Alpha numeric array for bullet element
IHS: Alpha numeric array for type and orientation of crystal

IHT: Alpha numeric array for target element
ILAY: Same as IDEEP
IN: Odd-even integer used to determine atom site establishment
IP: Subscript value of atom. Used in subroutine STEP and ENERGY

IQ: Parameter that determines whether or not a self defect is to be given a repulsive potential or a composite attractiverepulsive potential

ISHUT: A parameter used to shut down the program
IT: Unscaled fixed point x coordinate used in lattice generation
ITT: Odd-even integer used to determine atom site establishment
ITYPE: Parameter used to determine the type of point defect: vacancy, self-interstitial, replacement, foreign interstitial

IVACX, IVACY, IVACZ: Input plane numbers to specify NVAC
IX, IY, IZ: Number of x, y, z planes of crystal
J2: Variable in the cubic fit subroutine
JT: Unscaled y coordinate used in crystal generation
JTS: Variable used to establish atom sites
JTT: Variable used to establish atom sites
KF: Final K in LOCAT (K) assigned to an atom
KT: Unscaled z coordinate used to establish atom site
LCUT(I): Used to identify an ith atom which is not included in calculations

LD: \quad The highest numbered atom in the mobile layers
LL: The highest numbered atom in the entire crystal

LOCAT(K): Dimensioned variable that remembers the numbers of the atoms within a radius ROEL of the primary at time zero LS: Variable associated with each of the nine lattice generator subroutines

MCRO: One number higher than the order of the fit between the Born-Mayer and Morse potentials, always 4 in this simulation

ND: Data output increment, in numbers of timesteps
NDEC: Counting index for DTI variation
NEW: Parameter used to determine whether or not atom numbers have been stored in LOCAT(K)

NPAGE: Page numbering variable
NRUN: Parameter used to determine whether or not to read additional data cards

NS: Initial print statement timestep number
NT: Timestep number
NTT: Timestep number limit before shutdown
NVAC: An atom number used to establish point defects or used as a reference point for interstitial placement

PAC: Parameter for bullet force function correction

PBMAS: Primary mass in kilograms
PEXA, PEXB: Input Born-Mayer potential function parameters for the bullet-target interaction

PFPTC: Primary force function evaluated at ROE
PFXA: Primary force function parameter
PKE(I): Kinetic energy of the ith atom
PLANE: Alpha-numeric array for lattice orientation

POT: Potential energy between two atoms
PPE(I): Potential energy of the ith atom
PPTC: Primary potential function evaluated at ROE
PTE(I): Total energy of the ith atom (potential + kinetic)
PTMAS: Target mass in kilograms
RE: Input Morse potential parameter
RLL: Reciprocal of LL
RO: Spacing constant in $F C C(110)$ lattice generation subroutine
ROE: Nearest neighbor distance
ROE2: ROE squared
ROEA: Maximum cut off for Born-Mayer potential
ROEB: Minimum cut off for Morse potential
ROEC: Maximum cut off for Morse potential
ROEC2: ROEC squared
ROEL: Radius inside of which local potential energy is found
ROEL2: ROEL squared
ROEM: ROE-DII, region in which modification of repulsive force must be made
$R X(I), R Y(I), R Z(I): x, y, z$ coordinates of an ith atom at any time RXI(I), RYI(I), RZI(I): x, y, z coordinates of an ith atom's initial position

RXK (I), RYK (I), RZK(I): x, y, z coordinates of temporary position of an ith atom dur ing force cycle

SAVE: $\quad \frac{1}{2}$ POT
SCX, SCY, SCZ: x, y, z coordinate scale factors
START: An optional timing variable, not used in this simulation
SUM: Variable in cubic fit subroutine

TARGET: Alpha-numeric array for target material
TSAVE: Bullet mass/(target mass + bullet mass); distributes potential energy between target and bullet

TE: Total energy of all crystal atoms (kinetic + potential)
TEMP: Temperature of lattice in degrees Kelvin. Not used in this simulation

TEFAC: Product of DTI * CVD
TFAC: A time factor ratio used to determine $D T$ by maximum force method

TFACB: TFAC for the bullet
THERM: Thermal energy of atom. Not used in this simulation
TIME: Elapsed problem time in seconds
TLPE: Total local potential energy of atoms within a radius ROEL
TLPE \varnothing : TLPE at time zero
TMAS: Target atom mass in amu
TPKE: Total kinetic energy of all crystal atoms
TPOT: Total potential energy of all crystal atoms
TPOTL: Storage position for the last computed value TPOT
VSS: Storage variable for velocity components
$\operatorname{VX}(I), V Y(I), V Z(I): x, y, z$ components of ith atoms velocity
X, Y, Z: Unscaled coordinates used in crystal generation
XSTART: X Coordinate used in impact point generator
YLAX(I): Relaxation in $-y$ direction of ith layer in L.U.
ZP: Floating point form of JTT

COMPUTER PROGRAM

SIMULATION RUNS. THE DYNAHIC PRGGRAM IS ESSENTIALLY THE
SAME AS THE STATIC. IN THE DYNAMIC PREGRAM, SUBROUTINES (B100) AND (PLACE) ARE OMITTED, AND THE INITIAL ATOM POSI TIONS ARE READ IN ON DATA CARDS. ALSO, AN IMPACT POINT GENERATOR PACKAGE IS INCLUDED IN THE DYNAMIC PROGRAM. BOTH PROGRAMS CALCULATE THE EQUATIONS OF MOTION FOR THE SYSTEM THROUGH THE USE OF THE APPROPRIATE POTENTIAL FUNCTION AND THE AVERAGE FORCE METHCD OF INTEGRATION. THE NET DISTANCE OF MOVEMENT, VELOCITY, AND ENERGY VALUES ARE PRINTED OUT FOR THE DESIRED ATOMS ON SELECTED TIMESTEP NUMBERS. THE FINAL POSITICN, VELOCITY, AND ENERGY VALUES FOR EACH ATOM ARE SUMMARIZED AT THE END OF THE PROGRAM. $/ /$ EXEC FORTHCLG,TIME.GO $=20$, REGION.GC $=140 \mathrm{~K}$ //FORT.SYSIN DD :
DIMENSION $V X(1000), V Y(1000), V Z(1000), P K E(1000)$ DIMENSIONING OF VARIABLES NOT NEEDED IN COMMON
DIMENSION DX (1000), DY (1000), DZ (1000), PTE(1000)
DIMENSION RXK (1000), RYK (1000), RZK(1000)
COMMON LABELING OF VARIABLES REQUIRED IN OTHER SUBROUTINES COMMON/CDMI/RX (1000),RY(1000), RZ(1000), LCUT(1000), 1 LL, LD, ITYPE,NVAC
COMMON/COM2/IH1(20), IH2(8), IHS(10), IHB(E), IHT(6),
1 TARGET (4), THAS, BULLET (4), BMAS, PLANE, TEMP, THERM COMMON/COM3/RXI(1000), RYI(1000), RZI (1000), CVR,EVR, INT,TIME,DT,OTI, ILAY
1 IVACX, IVACY, I VACZ
COMMON/COM4/IX,IY,IZ,SCX,SCY,SCZ,IDEEP,DIX,D1Y,D1Z, COMMON/COM5/RQE,ROE2,ROEM,EXA,EXB, PEXA, PEXB,FXA,PFXA, 1 IQ, TSAVE,BSAVE COMMON COMG/FX (1000), FY(1000),FZ(1000), PAC,PFPTC,FM COMMON/CDM7/PPTC,TPOT, PPE(1000), TLPE,ROEL,RCEL2,NEW COMMON/COM8/ROEA, ROFR,ROEC,ROEC2, CPO,CP1,CP2,CP3,
$1 \mathrm{CFO}, \mathrm{CF} 1, \mathrm{CF} 2, \mathrm{CGO} 1, \mathrm{CGD} 2, \mathrm{CGB} 1, \mathrm{CGB} 2, \mathrm{CGF} 1, \mathrm{CGF} 2$ COMMON/COMA/ A $(4,5)$, MCRO

C

READ STATEMENT FORMATS

9010 FORMAT (20A4)

9020 FORMAT (8 A4, ЗF6. 5, 2F5. 2)
9030 FORMAT (4 4 $4,3 \mathrm{~F} 8 \cdot 5,6 A 4, F 6.2)$
9040 FORMAT (F6. $3,5 \mathrm{~K}, \mathrm{I} 5,6 \mathrm{I} 4,3 \mathrm{~F} 5,3 \mathrm{I} 2$)
9050 FORMAT ($10 A 4, A 4,4 \mathrm{I}, \mathrm{F} 8.4, \mathrm{I} 4, \mathrm{~F} 5.3$)
C
WRITE STATEMENT FORMATS
INITIALIZING
START=0.01*ITIME (XX)
DO $2 \mathrm{I}=1,1000$
$\operatorname{RXK}(I)=0.0$
RYK (I) $=0.0$
RZK (I) $=0.0$
$V X(I)=0.0$

```
    9610 FORMAT (1H1)
    9610 FORMAT (1H1)
    9620 FDRMAT (47X,'SUMMARY GF ATOMS://,35X,8A4, ', NT = \(14,1 / 1\),
        13('ATGM POSITION BIND ENERGY '),//)
    9630 FJRMAT(3(I5,3F6.2,FB.4,8X))
    9630 FJRMAT(3(I5,3F6.2,FB.4,8X))
    9640 FORMAT \(/ 4 X, \dot{F} 10.3,25 \mathrm{H}\) EV,TCTAL KINETIC ENERGY, FIO. 3 ,
        IH EV,TOTAL POTENTIAL ENERGY,FIO.3, EV, REDUCTION',
        1//60X'RADIUS = ',F5.2,)
        1//60X'RADIUS = ',F5.2,)
    9650 FORMAT (105X,4HPAGE,I \(2, /, 1 H 1\) )

    9670 FDRMAT(1i8,3F10.3,3F10.1,3F10.4)
    9680 FORMAT (' SHARP DT DECREASE', 2E10.3)
    9690 FORMAT (I4,3F5.2,I4)
    9690 FORMAT (I4,3F5.2,I4)
    9691 FORMAT(9F8.4)
    9691 FORMAT(9F8.4)
    9692 FORMAT (1X,I4,/)
    9692 FORMAT (1X,I4,/)
C
C
-
```

 VY(I)=0.0
 VZ(I)=0.0
 PKE(I)=0.0
 PPE(I) =0.0
 2 RZI(I)}=0.
 ISHUT=1
 NRUN=0
 C
INPUT DATA

```


CONSTANTS AND SCALING FACTORS
DTIS \(=0 T 1\)
RCE
ROE =SQRT (ROE2)
ROEM \(=\) ROE-DTI
ROEL2=ROEL*RCEL
CVE=1. \(60 \mathrm{E}-19\)
\(C V M=1.672 E-27\)
VFAC \(=.50\)
\(F M=1 \cdot 0 E-10\)
\(F M 2=F M * F M\)
CVD=CVR \(\% 1 . O E-10\)
CVED = CVE/CVD
PTMAS = TMAS ※CVM
PBMAS \(=\) BMAS \(\%\) CVM
HTMAS \(=0.5 \div\) PTMAS/CVE
HBMAS \(=0.5 * P B M A S / C V E\)
TSAVE=BMAS \(/(B M A S+T M A S)\)
BSAVE \(=\) TMAS \(/(\) BMAS + TMAS \()\)
C
REPULSIVE POTENTIAL PARAMETERS
\(F X A=A L O G(-E X B * C V E D)+E X A\)
\(P F X A=A L O G(-P E X B * C V E D)+P E X A\)
PPTC=EXP (PEXA+PEXBะROE)
\(P A C=A L(C G(C V E D)+P E X A\)
\(P F P T C=E X P(P A C+P E X B * R O E)\)
C
ÁtTRACTIVE POTENTIAL PARAMETERS
\(C G O 1=A L O G(D C O N)+2.0 * A L P H A * R E\)
CGD2 \(=A \operatorname{LOG}(2.0 * Q C O N)+A L P H A * R E\)
CGB1 \(=-2.0 * A L P H A * C V R\)
CGB2 \(=-A L P H A * C V R\)
CGF1 \(=A \operatorname{LOG}(-C G 31 * C V E D)+C G D 1\)
CGF2=ALOG(-CrB2*CVED) +CGO2
C CUTOFF DISTANCES FOR ATTRACTIVE AND REPULSIVE POTENTIALS ROEA \(=1.50 / C V R\)
ROEB=2.0/CVR
ROEC \(2=R O E C=R O E C\)
CARAMETERS FCR CALCULATION OF THE BEST CUBIC FIT IN THE GAP BETWEEN MAXIMUM DISTANCE CUTOFF OF THE REPULSIVE POTENTIAL (ROEA), AND MINIMUM DISTANCE CUTOFF DF THE ATTRACTIVE POTENTIAL (ROEB). SUBROUTINE CROSYM ACTUALLY PERFORMS THIS CURVE FITTING.
```

$\mathrm{A}(1,1)=1.0$
$A(1,3)=$ ROEA \div ROEA
$A(1,4)=R O E A \div=3$
$A(1,5)=E X P(E X A+E X B * R O E A)$
$A(2,1)=1.0$

```
```

 A (2,2)=ROEB
 A (2,3)=ROEB*ROEB
 A(2,4)}=\mathrm{ ROEB***3
 A(2,5)=EXP(CGD1+CG31*ROEB)-EXP(CGD2+CGB2*ROEB)
 A (3,1) =0.0
 A(3,2)=-1.0
 A (3,3)=-2.0*ROEA
 A}(3,4)=-3.0*ROEA*ROE
 A (3,5) = EXP(FXA +EXB*ROEA)/CVED
 A(4,1) =0.0
 A}(4,2)=-1.
 A(4,3)=-2.0*ROEB
 A(4,4)=-3.0*ROEB*ROEB
 A(4,5)=(EXP(CGF1+CGB1*RDEB)-EXP(CGF2+CGB2*ROEB))/CVED
 CALL CROSYM
 CPO=A (1,5)
 CP1=A (2,5)
 CP2=A (3,5)
 CP3 =A (4,5)
 CFO=-CP1*CVED
 CF1=-2.0*CP2*CVED
 5 READ (5, ЭO\&0) EVR,NTT,NS,ND,IP,IDEEP,ITYPE,NVAC,DIX,
IDIY,D1Z,IVACX', IVACY,IVACZ
IF(NTT.EQ.O) GO TO 9999
IQ=ITYPE-I
EV=EVR*1.OE+3

```

SELECTION OF THE DESIRED GRYSTAL STRUCTURE AND ORIENTATION. 100, 110 , AND 111 PLANES OF FACE-CENTERED, BODY-CENTERED, AND DI AMOND STRUCTUPES ARE ALLOWED. ILAY'AND IDEEP ARE VARIABLES ESTABLISHING THE NUMBER OF MOBILE LAYERS IN THE CRYSTAL. RXI(I) AND PXK (I) ARE VARIABLES SAVING THE RRIGINAL X-POSITION OF THE I'TH ATOM. Y AND Z POSITIONS ARE
ANALOGOUS.
14 CALL B100
30 ILAY=IDEEP
IF (IDEEP) 35,35,40
35
LD \(=L \mathrm{~L}\)
ILAY \(=I Y\)
40 RLL \(=1.0 / \mathrm{LL}\)
TPOTL=1.0
DOK45 I \(=1, L L\)
RYK(I) \(=\) RY(I)
RZK (I) \(=\) RZ \((I)\)
RXI \((I)=R X(I)\)
\(R Y I(I)=R Y(I)\)
45 RZI(I)=RZ(I)
C
THIS SECTION ALLOWS ONE TO REPEAT A RUN OF THE PROGRAM WITH DIFFERENT DATA WITHOUT REPEATING INITIALIZATION, POTENTIAL PARAMETER CALCULATIONS AND CRYSTAL LATTICE BUILDING• SUBROUTINE PLACE USES LCUT(I) AND NVAC TO CREATE VACANCIES, INTERSTITIALS, AND REPLACEMENT IMPURITIES AT DESIRED LOCATIONS IN THE LATTICE.

IF(NRUN.EQ.O) GO TO 60
DO \(55 \mathrm{I}=1, \mathrm{LL}\)
LCUT(I)=0
\(R X(I)=R X I(I)\)
RY(I) \(=\) RYI \((I)\)
RZ (I) = RZI (I)
RXK (I) \(=\) RXI (I)
RYK (I) \(=\) RYI (I)
55
60
RZK (I) = RZI (I)
NRUN = 1
CALL PLACE
R×I(1) \(=\) RX(1)
RYI (1) \(=\) RY(1)
RZI (1) = RZ(I)

RXK (1) \(=R X(1)\)
\(\operatorname{RYK}(1)=R Y(1)\)
RZK(1) \(=\) RZ(1)
DO \(65 \mathrm{I}=1, \mathrm{LL}\)
VX(I) \(=0.0\)
VY(I) \(=0.0\)
\(V Z(I)=0.0\)
\(\operatorname{PPE}(I)=0.0\)
\(\operatorname{PKE}(I)=0.0\)
65
PTE \((I)=0.0\)
TPOT \(=0.0\)
NEW=0
c
THE ENERGY SUBROUTINE CALCULATES THE POTENTIAL ENERGY OF EACH ATOM IN THE LATTICE. SUBROUTINE LOCAL SUMS UP THIS ENERGY FOR ALL ATOMS WITHIN A SPECIFIC RADIUS OF THE POINT DEFECT
THIS SECTI ON PRINTS OUT X, Y, AND Z COORDINATES, IN LATTICE UNITS, AND BINDING ENERGIES OF EACH ATOM IN THE CRYSTAL AT TIME ZERO.

CALL ENERGY
BINC=-TPOT
TE=TPOT+BIND
C
```

TIME=0.0
NT =0
WRITE (6,9810)
WRITE $\quad 6,9620)$ IH2,NT

```

DO 70 I=1,
\(K=I+1\)
70
WRITE ( 6,9630\()\) I, RX(I), RY(I), RZ(I), PPE(I), K,RX(K), IRY(K),RZ(K), PPE (K), J,RX(J), PY(J), RZ(J),PPE(j) WRITE ( 6,9640) TPKE,T.PחT, TE,ROEL
NPAGE \(=1\)
NPAGE \(=N P A G E+1\)
WRITE (6,9650) NPAGE
C
THIS IS THE MAIN BODY CF THE PROGRAM. BY USE OF THE AVERAGE FORCE METHOD, EXPLAINED IN REF. 13 , IT DOES ALL
THE DYNAMICS FOR EACH INDIVIDUAL ATGM. SUBROUTINE STEP CALCULATES ALL MUTUAL FCRCES AMONG THE ATOMS. BASED ON THE FORCES, THIS SECTION THEN CALCULATES TEMPORARY POSITIONS FOR THE PRIMARY, AND ALL OTHER ATOMS; PECALCULATES FOPCES IN STEP; AND THEN RECALCULATES FINAL POSITIONS FOR THE PRINARY AND ALL OTHER ATOMS, BASED ON THE AVERAGE OF THESE TWO FORCES. THIS SECTION ALSO INCLUDES ALL KINETIC ENERGY CALCULATIONS, BASED ON THE VELOCITIES INVCLVED; AND FINALLY CALCULATES A NEW TIMESTEP DURATION FOR USE IN THE NEXT TIMESTEP, BASED ON EITHER A MAXIMUM ALLOUED FORCE, OR MAXIMUM ALLOWED ENERGY. VFLOC.ITIES ARE HALVED AT THE END OF EACH TIMESTEP AS A METHOD OF DAMPING.
```

```
DT \(=1.05-15\)
DDTI \(=.005\)
```

```
DT \(=1.05-15\)
DDTI \(=.005\)
NDEC = 0
NDEC = 0
100 DTI=DTI-DDTI
    NDEC \(=\) NDEC +1
    NDEC \(=\) NDEC +1
    DTOD=DT/CVD
    DTOD=DT/CVD
    TFAC \(=2.0 * P T M A S * D T I * C V D\)
    TFAC \(=2.0 * P T M A S * D T I * C V D\)
    TFACB=2.0\%PB:MAS*DTI*CVD
    TFACB=2.0\%PB:MAS*DTI*CVD
    TEFAC \(=D T I \% C V D\)
    TEFAC \(=D T I \% C V D\)
    HDTOD \(=0.5 * D T C D\)
    HDTOD \(=0.5 * D T C D\)
    DTOM=DT/PTMAS
    DTOM=DT/PTMAS
    HDTOM \(=0.5 *\) DTCM
    HDTOM \(=0.5 *\) DTCM
    DTOMB \(=\) DT \(/ P\) BIIAS
    DTOMB \(=\) DT \(/ P\) BIIAS
    HDTOMB \(=0.5 \%\) TOMB
```

 HDTOMB \(=0.5 \%\) TOMB
    ```
```

 IF(LCUT(1).GT.0) GO TO 240
    ```
    IF(LCUT(1).GT.0) GO TO 240
    \(1=1\)
    \(1=1\)
    RXK (I) = RX(I)
```

 RXK (I) = RX(I)
    ```
200
```

 RYK(I)=RY(I)
 RZK(I)=RZ(I)
 RX(I) =RX(I)+DTOD*(HOTOMB:F FX(I)+VX(I))
 RY(I)=RY(I)+DTOD*(HDTOMB*FY(I)+VY(I))
 RZ(I) =RZ(I)+DTOD*(HDTOMB*FZ(I) +VZ(I))
 240
DO 245 I =2,LD
IF(LCUT(I).GT.O)GO TO 245
RXK(I) = RX(I)
RYK(I)=RY(I)
RZK(I)=RZ(I)
RX(I)=RX(I)+DTOD*(HDTOM*FX(I)+VX(I))
RZ(I)=RZ(I)+DTCD*(HDTOM*FZ(I)+VZ(I))
2 4 5
CALL STEP
EMAX =0.0
FMAX=0.0
TIME=TIME+DT
NT =NT+1
IF(LCUT(1).GT.0) GO TO 265
I=1
VSS=VX(I)
VX(I)=VSS+HDTOMB*FX(I)
RX(I) =RXK(I)+(VX(I)+VSS)*HDTOD
VSS=VY(I)
VY(I)=VSS+HDTOMB*FY(I)
RY(I)=RYK(I)+(VY(I)+VSS):HDTOD
VSS=VZ(I)
VZ(I)=VSS+HDTOMB=冫FZ(I)
RZ(I)=RZK(I)+(VZ(I)+USS)*HDTOC
PKE(I) =VX(I) *VX(I) +VY(I) wVY(I) +VZ(I) wVZ(I)
EMAXI=PKE(I)
FMAXI=FX(I)*FX(I)+FY(I)*FY(I)+FZ(I)*FZ(I)
DTEI=TEFAC*SGRT(1.O/FMAX1)
DTF1=SQRT(TFACB/FMAX1)
FX(I)=0.0
FY(I)=0.0
FZ(I)=0.0
265 DO 280 I =2,LD
IF(LCUT(I).GT.0)GO TC 280
VSS=VX(I)
VX(I)=VSS+HDTOM*FX(I)
RX(I) =RXK(I)+(VX(I)+VSS)*HDTCD
VSS=VY(I)
VY(I)=VSS+HDTOM*FY(I)
RY(I)=RYK(I)+(VY(I)+VSS)\divHOTOD
VSS=VZ(I)
VZ(I)=VSS+HOTOM*FZ(I)
RZ(I)=RZK(I)+(VZII)+VSS)*HDTOD
PKE(I)=VX(I)*VX(I)+VY(I)*VY(I)+VZ(I)*VI(I)
FX(I)=0.0
FY(I)=0.0
FZ(I)=0.0
IF(F2.GT.FMAX) FMAX=F2
IF(PKE(I).GT.EMAX) EMAX=PKE(I)
CONTINUE
DTL=DT
CTIME=0.01~ITIME (XX) - START
DTE=TEFAC*SQRT (1.0/EMAX)
DTF=SQRT (TFAC/FMAX)
IF(EMAXI.GT.EMAX) SMAX=EMAXI
DT=DTEI
IF(DT.GT.DTF1) DT=OTF1
IF(DT.GT.DTE) DT=OTE
IF(DT.GT.DTF) DT=DTF
IF(DT.GT.1.OE-14) DT=1.OE-14
300
310
IF(ISHUT, EQ.-1) GO TO 400
IF (NS-NT) 4JO,400,320
DO 325 I = 1,LL
VX(I) =VFAC=VX(I)
VY(I) = VFAC}\ddaggerVY(I

```
\(325 \mathrm{VZ}(\mathrm{I})=V F A C \% V Z(I)\)
C
THE PRINT SUBROUTINE PLACES A HEADING OF PERTINENT INFORMATIGN AT THE TOP OF EACH TIMESTEP PRINTOUT.
POTENTIAL ENERGY AND LOCAL POTENTIAL ENERGY FOR EACH ATOM ARE CALCULATED BASEO CN THE NEW POSITICNS. SUMMATIONS OF TOTAL POTENTIAL ANE KINETIC ENERGY FOR THE LATTICE ARE PERFORMED. DX, DY, ANO DZ KEEP TRACK OF MOTION RELATIVE TO THE
INITIAL POSITION AT TIME ZERO FOR EACH ATOM.
```

 400 CALL PRINT
 410 TPOT=0.0
 DO 450 I \(=1, L L\)
 450 PTE (I) \(=0.0\)
 CALL ENERGY
 PKE (1)=HBMAS*PKE(1)
 TPKE=PKE(1)
 PTE(1)=PKE(1)+PPE(1)
 DO \(620 \quad \mathrm{I}=2\), LL
 PKE(I) \(=\) HTMAS※PKE(I)
 TPKE = TPKE+PKE(I)
 620 PTE(I) \(=\) PKE(I)+PPE(I)
 TE =TPOT+BIND
 WRITE (6,9660)
 DTEST=(RY(1)-RYI(1)) \(\% * 2\)
 IF (DTEST.CT. 0.01) DTEST \(=0.01\)
 IF(TPOT.LE.TPOTL) GO TO 700
 700 ERAT =TPKE*RLL
 DX(I)=RX(I)-RXI(I)
 DY $(I)=R Y(I)-R Y I(I)$
DZ(I) =RZ(I:-RZI(I)
IF (DX (I)**2.GE.DTEST) GO TO 720
IF (DZ (I) * $\because * 2$ GE GOTEST) GO TO 720

```
C

C
THIS SECTION PRINTS THE RELATIVE MOTION, VELOCITY, AND ENERGY OF EACH ATOM, FCR EVERY TIMESTED SO DESIGNATED: IE, EVERY ND'TH TIMESTEP, BEGINNING WITH \#NS AND ENDING WITH \#NTT.

720 WRITE ( \(\left.{ }^{6}, 9670\right)(I), D X(I), D Y(I), D Z(I), V X(I), V Y(I)\),
750 CONT INUE WRITE ( 6,9640\()\) TPKE,TPOT,TE,ROEL WRITE ( 6,9650) NPAGE
NPAGE \(=\) NDAGE +1
TPOTL = TPOT
IF (NT-NTT) 760,950,950
760 DO \(780 \mathrm{I}=1, \mathrm{LL}\)
\(V X(I)=V F A C \div V X(I)\)
\(V Y(I)=V F A C \geqslant V Y(I)\)
\(V Z(I)=V F A C * V Z(I)\)
780 CONTINUE
IF (ISHUT.EQ.-1) GO TO 950
790 NS = NS + ND
800 IF (NDEC.EQ.10) GO 10810
GO TO 100
810 DDTI =0.1*DDTI
DTI = DTI + DDTI
NDEC=0
950 CONTINUE
C
THIS SECTION PRINTS OUT \(X, Y\), AND \(Z\) COORDINATES AND BIVDING ENERGIES OF EACH ATOM IN THE CRYSTAL AT THE END OF THE PROGRAM. ALSO, DATA CARDS ARE PRINTED WI TH \(X, Y, Z\) COCRDINATE OF EACH ATOM IN THE CRYSTAL FOR USE IN THE DYNAMIC PROGRAM.
```

 955 WRITE (6,9620) IH2,NT
 WRITE (7,9690) LL,DIX,DIY,DIZ,NVAC
 DO 965 I=1,LL,3
 K=I+1
 J=I +2
 \ 1RZ(J)
 1RY(K),RZ(K),PPE(K),J,RX(J),RY(J),R
 WRITE (6,9650) NPAGE
 1000 IF(ISHUT) 9999,5,5
STOP
SUBROUTINE CROSYM
SCLVES M SIMULTANEOUS EQUATIONS GY THE METHOD OF CROUT THIS SUBROUTINE FITS THE BEST CUBIC BETWEEN THE REPULSIVE aND attractive parts of the potential.
COMMON/COMA/ A(4,5),MCRO
$M=M C R O$
$N=M+1$
100 13 = 11
$\operatorname{SUM}=A B S(A(I 1, I 1))$
DO $120 I=I 1, M$
IF(SUM-ABSSA(I, I1))) $110,120,120$
110 13=1
SUM=ABS(A(I,I1:)
120 CONTINUE
IF (13-I I) 130,150,130
130 DOM $140 \mathrm{~J}=1, \mathrm{~N}$
$S \cup M=-A(I 1, J)$
$A(I 1, J)=A(I 3, J)$
$140 \mathrm{~A}(13, \mathrm{~J})=$ SUM
$13=11+1$
DO $160 \mathrm{I}=\mathrm{I} 3, \mathrm{M}$
160 A(I, I1 $)=A(I, I 1) / 4(I 1, I 1)$
$13=11+1$
IF (J2) $180,200,180$
DO 190 J=I $2, N$
180 DO $190 \mathrm{~J}=\mathrm{I} 3, N$
190 A $(I-1, J)=A(I I, J)-A(I I, I) * A(I, J)$
IF(II-M) 200,220,200
$200 \begin{aligned} & \mathrm{J} 2=\mathrm{I} 1 \\ & \mathrm{I} 1=11+1\end{aligned}$
DO $210 \mathrm{I}=\mathrm{I} 1, \mathrm{M}$
210 A(I,I1)=A(I, I1)-A(I,J) $\because A(J, I 1)$
$\operatorname{IF}(11-M) 100,170,100$
220
$\begin{array}{ll}J 2=M-I \\ 13 & =12+1\end{array}$
A $13=J 2+1$
$A(13, N)=A(13, N) / A(13, I 3)$
IF (J2) 230,250,230
230 DO $240 \mathrm{~J}=1, \mathrm{~J} 2$
$240 \quad A(J, N)=A(J, N)-A(I 3, N) * A(J, I 3)$

THIS IS A LATTICE GENERATOR THE THE BCC (100) ORIENTATION. THE CRYSTAL IS DEVELOPED IN THE ORDER, X FOLLOWED BY Z, FOLLOWED BY Y CONTAINS A NONSTANDARD USE DF THE SURFACE RELAXATION PARAMETER.
COMMON/COML/RX(1000),RY(1000),RZ(1000),LCUT(1000),
COMMON/COML/RX
COMMON SCOM4/IX, IY, IZ, SCX,SCY,SCZ,IDEEP, DIX,DIY,DIZ,
1 IVACX, IVACY, IVACZ
DIMENSION YLAX(20)
DATA YLAX/20\%0.0/
$Y \operatorname{YAX}(1)=-0.20$
$Y \operatorname{LAX}(2)=-0.03$
SCX $=1.0$
SCY $=1.0$
SCY $=1.0$
$\mathrm{SC}=\frac{1}{2} \cdot 0$
$J T=0$
$Y=-S C Y$
$\mathrm{CO} 60 \mathrm{~J}=1, I \mathrm{C}$
$\mathrm{Y}=\mathrm{Y}+\mathrm{SC} \mathrm{Y}$
$K T=0$
$Z=-5 C Z$
DO $59 K=1$, IZ
$Z=Z+S C Z$
$I T=0$
$x=-S C x$
0058
$x=x+5 C$
IF (IT-(IT/2)*2) 21,11,21

$R X(M)=X$
$R Y(M)=Y+Y L A X(J)$
$R Z(M)=Z$
$M=M+1$
$\begin{array}{llll}\text { IF (IT.NE.IVACX) } & \text { GO TO } & 57 \\ \text { IF (JT:NE:IVACY) } & \text { GO TO } & 57\end{array}$
IF (KT.NE.IVACZ) GO TO 57
NVAC $=M-1$
$I T=1 T+1$
KT $=$ KT NE
$K T=K T+1$
59 CONTINUE

CONTINUE
$L L=M-1$
100 RETURN
$110 \begin{aligned} & \mathrm{LD}=\mathrm{M}-1 \\ & \text { GO TO } 60 \\ & \text { END }\end{aligned}$
SUBROUTINE PLACE
CHIS SUEROUTINE LQCATES A VACANCY, INTERSTITIAL, OR REPLACEMENT IMPURITY IN THE LATTICE.

10 LCUT (NVAC) $=1$
LCUT(1) $=1$
$R X(1)=0.0$
RY(1) $=0.0$
$R Z(1)=0.0$
GO TO 50
$\operatorname{RY}(1)=R Y(N V A C)+D 1 Y$
$R Z(1)=R Z(N V A C)+$
GO TO 50
$R X(1)=P X(N V A C)$
$R Y(1)=R Y(N V A C)$
$R Z(1)=F Z(N V A C)$
GO TO 50
$40 R X(1)=R X(N V A C)+D 1 X$
$R Y(1)=R Y(N V A C)+D 1 Y$
$R Z(1)=R Z(N V A C)+D 1 Z$

50

END

SUBROUTINE STEP
C
THIS SUBROUTINE DOES THE DYNAMICS FOR ONE TIMESTEP.
THE FIRST HALF DOES THE DYNAMICS FOR ATOM \#I; THE SECOND HALF FOR ALL OTHERS.

C
COMMON/CCM1/RX(1000), RY(1000), RZ (1000), LCUT(1000), 1LL,LD, ITYPE, NVAC
COMMON /COMS/ROE,ROE2,ROEM, EXA, EXB, PEXA, PEXB, FXA, PFXA,
$1 I Q, T S A V E, B S A V E$
COMMON/COH6/FX(1000),FY(1000),FZ(10J0),PAC,PFPTC,FM
COMMCN/COM8/ROEA, ROEE, ROEC, ROEC2,CPO,CP1,CP2,CP3,
1 CFO, CF1,CF2, CGO1,CGO2, CGB1, CGB2, CGF1, CGF2
100
101
$I F(I Q-1)$
$I P=2$
$G O=200$
102
GO TO 200
105
110 DRX=RX(J)-RX(I)
IF (DRX) $113,117,117$
113 IF (DRX +RDE) $195,195,120$
117 IF(DRXXROE $120,195,195$
120 DRY=RY(J)-RY(I)
IF (DRY) $123,127,127$
123 IF (DRY+ROE) $195,195,130$
127 IF (DRY-ROE) $130,195,195$
130 DR $Z=R Z(J)-F, Z(I)$
IF (DRZ) 1כ3, 137,137
133 IF (DRZ +RDF $195,105,140$
137 IF (RRZ-ROE $140,195,195$
140 DIST=DRX*DRX+DRY $\because D R Y+O R Z \div D R Z$
IF (DIST-ROEZ $150,105,105$
150 DIST=SQRT (DIST)
100 IF(DIST-FOFi\%) it2, 1ó2, 105
162 FORCE = EXP (FFXA + PEX B \because DIST)
GO TO 180
$165 \mathrm{DFF}=\mathrm{ROE}$-DIST
IF (DFF-1.0E-10) 195,195,167
$167 \mathrm{FORCE}=(E X P(D A C+P E X B * O I S T)-P F P T C) / D F F$
190 FOD=FORCE/DIST
$F A=F O D \because O R X$
$F^{F X}(J)=F X(J)+F A$
$F X(I)=F X(I)-F A$
$F A=F O D \div D R Y$
$F Y(J)=F Y(J)+F A$

C
195
$F Y(I)=F Y(I)-F A$
$\mathrm{FA}=\mathrm{FOD} \approx \mathrm{DRZ}$
$F Z(J)=F ?(J)+F A$
$F Z(I)=F Z(I)-F A$
200 DO 300 I=IP, LD
IF LCUTII) 300
$205 \mathrm{IP}=\mathrm{I}+1$
DO $295 \mathrm{~J}=\mathrm{IP}$, LL
IF(LCUT(J)) $295,210,295$
210 DRX=RX(J)-RX(I)
IF (DRX) 213,217,217
213 IF (DRX+ROFC) $295,295,220$
$217 \mathrm{IF}(D R X \rightarrow R O E C)$
$220,295,295$
220 DRY=RY (J)-RY (I)
IF (DRY) 22̇; 227,227
223 IF (DRY + ROEC) 295,295,230
227 IF (DRY-ROEC) $230,295,295$
230 DRZ=RZ(J)-RZ(I)
IF (DRZ) $233,237,237$
233 IF (DRZ + ROEC) $295,295,240$
237 IF (DRZ-ROEC) $240,295,295$
240 DIST = DRX $\because D R X+D R Y * D R Y+D R Z * D R Z$
IF (DIST-ROEC2) $250,295,295$
250 DIST=SQRT(OIST)
255 IF (DIST-RNEA) $260,255,255$
260 FORCE =EXP (FXA +EXB*DIST)
GO TO 280
265 FORCE $=$ DIST*(DIST $\% C F 2+C F 1)+C F 0$
GO TO 280
270 FORCE $=$ EXP (CGF1 + CGB1 \div OIST) -EXP (CGF2+CGB2*DIST)
280 IF (ABS(FORCE) LE.FM) GO TO 295
FOD $=$ FORCE/DIST
$F A=F O D \div D R X$
$F X(J)=F X(J)+F A$
$F X(I)=F X(I)-F A$
$F A=F O D \approx D R Y$
$F Y(J)=F Y(J)+F A$
$F Y(I)=F Y(I)-F A$
$F A=F O D * D R Z$
$F Z(J)=F Z(J)+F A$
395 CONTINUE
RETURN
END
SUBROUTINE ENERGY
CHIS SUBROUTINE CALCULATES THE MUTUAL POTENTIAL ENERGIES. THE FIRST HALF DOES THE DYNAMICS FOR ATOM \#I; THE SECOND HALF FOR ALL OTHERS.
C

```
            COMMON/COM1/RX(1000),RY(1000),RZ(1000), LCUT(1000),
            \(1 \mathrm{LL}, \mathrm{LD}\), ITYPE, NV 4 C
            COMMCN/COM5/ROE, ROE2, ROEM, EXA, EXB, PEXA, PEXB,FXA,PFXA,
    IIQ, TSAVE, BSAVE
    COMMCN/COM7/PPTC, TPOT, PPE (1000), TLPE,ROEL, ROEL 2,NEW
    COMMON/COM8/ROEA,RDEB,ROEC,ROEC2,CPJ,CP1,CP2,CP3,
    1 CFO, CF1, CF2, CGO1,CGD2,CGB1, CGB2, CGF1,CGF2
    IF \(\operatorname{IP}=2\)
    \begin{tabular}{ll}
\(I P=1\) & 200 \\
\(G O\) & \(T O\) \\
\hline
\end{tabular}
    \(1 P=2\)
    DO \(595 \mathrm{~J}=\mathrm{IP}, \mathrm{LL}\)
IF (LCUTIJ)
(J)
```

101
105

```
    510 DRX=RX(J)-RX(I)
    IF(DRX) 513,517,517
    513 IF(DRX+ROE) 505,595,
    IF(DRX-ROE) 520,5955,595
    DRY=RY(J)-RY(I)
    IF(DRY) 523,527,527
    523 IF (DRY +RDE) 595,595,530
    527 IF(DRY-ROE) 530,595,595
    530 DRZ=RZ(J)-RZZ(I)
    IF(DRZ) 533,537,53?
    533 IF(DRZ+ROE) 595,595,540
    537 IF(DRZ-ROE) 540,595,595
    540 DIST=DRX*DRX+DRY*DRY+DRZ*DRZ
    IF(DIST-ROE2) 550,595,595
    550 DIST=SORT (OIST)
    560 POT=EXP(PEXA+PEXB*DIST)-PPTC
    580 TPOT=TPOT+POT
    PPE(I)=PPE(I)+BSAVE*POT
    PPE(J) =PPE(J) + TSAVE*POT
    595 CONTINUE
    600 CONT INUE
C
    200 DO 300 I =IP,LD
    205 IP=I+1
    DO 295 J=IP,LL
    IF(LCUT(J)) 295,210,295
    210 DRX=RX(J)-RX(I)
    IF(DRX) 213,217,217
    213 IF (DRX +ROEC) 295,295,220
    217 IF(DRX-ROEC) 220,295,295
    220 DRY=RY(J)-RY(I)
    IF(DRY) 223,227,227
    223 IF(DRY+ROEC) 295,295,230
    227 IF(DRY-ROEC) 230,295,295
    230 DRZ=RZ(J)-RZ(I)
    IF(DRZ) 233,237,237
    233 IF(DRZ+ROEC) 295,295,240
    237 IF(DRZ-ROEC) 240,295,295
    240 DIST=DRX*VRX+DRY%DRY+DRZ%DRZ
    IF(DIST-RDEC2) 250,295,295
    250 DIST=SQRT(DIST)
    IF(DIST-RNEA) 260,255,255
    255 IF(DIST-ROFB: 265,270,270
    260 POT=EXP(EXA+EXB%:DIST)
    GO TO 280
    265POT=DIST*(DIST*(DIST*CP3+CP2)+CP1)+CPO
    GO TO 280
    270 POT=EXP(CGD1+CGB1*DIST)-EXP(CGD2+CGB2*DIST)
    280 TPOT=TPOT+POT
    SAVE=0.5%POT
    PPEE(I)=PPE(II)+SAVE
    PPE (J)=PPE(J)+SAVE
    295 CDNTINUE
    CONTINUE
    RETURN
    END
```


SUBROUTINE PRINT

C
THIS SUBROUTINE PRINTS THE HEADING OF ALL PERTINENT INFCRMATION AT THE TOP OF EACH TIMESTEP PRINTOUT.

COMMON/CCMI $/ R X(1000), R Y(1000), R Z(1000), L C U T(1000)$, 1LL,LD, ITYPE,NVAC
COMMOH/COMEIHI (20), IH2(8), IHS (10), IHB(6), IHT(6), 1 TARGET (A), TMAS, BULLET 4), BMAS, PLANE, TEMP, THERM
COMNION/COM3/KXI (1000), RYI (1000), RZI (1000), CVR,EVR, INT, TIME, DT, OTI, ILAY
COMMON/COM4/IX,IY,IZ,SCX,SCY,SCZ,IDEEP,DIX,DIY,DIZ, IIVACX, IVACY, IVACZ

COMM ON/CDM5/ROE,ROF2,ROEM, EXA, EXB, PEXA, PEXB, FXA, PFXA, IIQ,TSAVE, BSAVE COMMON/COM8/ROFA,RDEB,ROEC,ROEC $2, C P O, C P 1, C P 2, C P 3$,
1 CFO, CF1, CF2,CGD1, CGD2, CGB1, CGB2, CGF1, CGF2
9710 FORMAT ($40 \mathrm{X}, 1044,1,28 \mathrm{X}, 20 \mathrm{~A} 4,1)$
9720 FORMAT 9 H TARGET -, 4A4,10HPRIMARY - , 4A4, $1 \mathrm{X}, 14$ HLATTICE 1 UNIT $=, F 7.4,4 \mathrm{H}$ ANG)
9730 FORMAT $(4 X, 6 H M A S S=, F 7.2,13 X, 6$ HMASS $=, F 7.2,9 X, 14$ HLATTIC IE TEMP $=\mathrm{F} 5.2,7 \mathrm{H}$ DEG $\mathrm{K}, 18 \mathrm{H}$ THERMAL CUTOFF $=, F 5.2,3 \mathrm{H}$ E 1V/)
9740 FORMAT $(2 \mathrm{H}(, A 4,8 \mathrm{H})$ PLANE, 18 H PRIMARY ENERGY $=$,
1 F5.2, $21 H K E V$, CRYSTAL SIZE $, I 2,3 H X, I 2,3 H X, I 2,3 H$ 9741 FORMAT $(2 H 1, A 4,8 H)$ PLANE, $18 H$ PRIMARY ENERGY $=$, 1 F5.3,21HKCV, CRYSYAL SIZE, I2, $3 H X, I 2,3 H X, I 2,3$ 1H), ', $4 \times$, 'INTERSTITIAL (',2(F5.2,','),F5.2,') FROM
9742 FGRMAT $(2 H$ (,A4, 3 H$)$ PLANE, 18 H PRIMARY ENERGY $=$, 1 F5.2, 21HKEV, CRYSTAL SIZE , I $2,3 H X, I 2,3 H X, I 2,3 H$
 1F5. $2,5 H, Z=, F 5.2,5 X, I 3, '$ LAYERS ARE FREE TO MOVE', $110 \mathrm{X}, 4 \mathrm{HIQ}=, 121 \mathrm{~J}$
9760 FORMAT (12H POTENTIAL, $6 A 4,3 X, 5 H P E X A=, F 9.5,2 X, 5 H P E X B=$, 1F9.5,2X,5HPFXA=.F9.5)
9765 FORMAT ($12 \mathrm{X}, 6 \mathrm{~A} 4,3 \mathrm{X}, 5 \mathrm{HEXA}=, \mathrm{FQ} .5,2 \mathrm{X}, 5 \mathrm{HEXB}=, F 9.5,2 \mathrm{X}, 5 \mathrm{HFX}$ $1 A=, F 9.5 /)$
9770 FORMAT ${ }^{\prime}$ ' WHEN:,F8. $4^{\prime},^{\prime}<R<', F 8.4$, THE MATCHING POTEN 1 TIAL PARAMETERS ARE', $\%, 1$ CPO =1,F1O.3,,$~ C P 1=1$ IF10.3,1, CP2 = , F10.3, 1, CP3 = , F10.3, 1,1 , CFO =1 1E10.3,', CF1 =', E1O.3,', CF2 = ', F1 O. $3,1 / 1$
9780 FORMAT (' CUT-OFF ATi,F5.2,', WHEN F $>, 1, F 6.3,1$ LU, MOR
ISE POTENTIAL PARAMETERS ARE , $8 A 4, / /, 10 X, 1$ CGDI $=1$,
1F8.4, 1, CGD2 = 1,F8.4, 1, CGB1 = $1, F 8.4,1, C G B 2=1, F 8.4$;'

 =1, E10.4/)
WRITE $(6,9710)$ THS, IHI
WRITE $(6,9720)$ TARGET,BULLET, CVR
WRITE 6,9730$)$ TMAS, BMASTEMP, THERM
GOTO (401,402,403,402), ITYPE
401 VRITE (6,9740) PLANE,EVR,IX,IY,IZ,NVAC
GO TO 405
402
WRITE (6,9741) PLANE,EVP, IX,IY,IZ,DIX,DIY,DIZ,NVAC
403
405
GO TO 405

BLOCK DATA
DIMENSIONING OF VARIABLES USED IN CCMMCN
COMMON:COMI/RX (1000), RY(1000),RZ(1000),LCUT(1000),
1LL, LD, ITYPE,NVAC
DATA RX/1000\%O.0/,RY/1000*0.0/,RZ/1000*0.0/,LCUT/1000*
COMMON/COM3/RXI (1000), RYI(1000), RZI(1000), CVR, EVR,
INT, TIME,DT,OTI, ILAY
DATA RXI/ $1000 * 0.0 /$, RYI / $1000 \div 0.0 /$, RZI / $1000 \div 0.0 /$
COMMON/COM6/FX(1000), FY(1000),FZ(1000), PAC,PFPTC,FM
DATA FX/ $1000 * 0.0 /$, FY/1000*0.0/,FZ/ $1000 \div 0.0 /$
END
//GO.FTO6F001 DD SPACE=(CYL, $(10,2)$, RLSE)
//GO.SYSIN DD *
CRYSTAL-1968 MUDIFIED TO DEAL WITH VACANCIES AND INTERSTITI
(GIRIFALCO-WEIZER POTENTIAL)
ARGON
39.948
183.86
. 99060 TUNGSTEN 183.86 11.30
BODY CENTERED CUBIC, 1001001 ORIENTATION
1.41160 3. 03200
ARGON-TUNGSTEN
3.4
TUNGSTEN-TUNG STEN
$\begin{array}{rrrr}100 & 10 & 10.105 \\ 0.7 & -0.7 & 0.0 & 5\end{array}$

1. Gay, W.L., Harrison, D.E., Jr., "Machine Simulation of Collisions Between a Copper Atom and a Copper Lattice," The Physical Review, v. 135, No. 6A, p. al780-Al790, 14 Sept 1964.
2. Harrison, D.E., Jr., Levy, N.S., Johnson, J.P. III, and Effron, H.M., "Computer Simulation of Sputtering," Journal of Applied Physics, v. 39, No. 8, p. 3742-3761, July $1 \overline{9} 68$.
3. Harrison, D.E., Jr., "Additional Information on Computer Simulation of Sputtering," Journal of Applied Physics, v. 40, No. 9, p. 3870-3872, August 1969.
4. Harrison, D.E., Jr., Greiling, D.S., "Computer Studies of Xenon-Ion Ranges in a Finite-Temperature Tungsten Lattice," Journal of Applied Physics, v. 38, No. 8, p. 3200-3211, July 1967.
5. Gibson, J.B., Goland, A.N., Milgram, M. and Vineyard, G.H., "Dynamics of Radiation Damage," The Physical Review, v. 120, No. 4, p. 1229-1253, November 15, 1960.
6. Johnson, R.A., Brown, E., "Point Defects in Copper," The Physical Review, v. 127, No. 2, p. 446-454, 15 July $\overline{1962}$.
7. Erginsoy, C., Vineyard, G.H., and Englert, A., "Dynamics of Radiation Damage in a Body-Centered Cubic Lattice," The Physical Review, v. 133, No. 2A, p. A595-A606, 20 Jañary 1964.
8. Kornelsen, E.V., Sinha, M.K., "Thermal Release of Inert Gases from a (100) Tungsten Surface," Journal of Applied Physics, v. 39, No. 10, p. 4546-4555, September 1968 .
9. Kornelsen, E.V., Sinha, M.K., "Thermal Release of Inert Gases from Tungsten; Dependence on the Crystal Face Bombarded," paper presented at Conference on Atomic Collision and Penetration Studies Using Energetic Ions, Chalk River, September 1967.
10. Johnson, R.A., "Point Defect Calculations for an fcc Lattice," The Physical Review, v. 145, No. 2, p. 423-433, 13 May 1966.
11. Johnson, R.A., "Point-Defect Calculations in Alpha Iron," American Society for Metals, Chap. 27, p. 357-370, 1965.
12. Harrison, D.E., Jr., Leeds, R.W., and Gay, W.L., "Computer Studies of Copper Atom Ranges in Copper Lattices," v. 36, No. 10, p. 3154-3161, October 1965.
13. Harrison, D.E., Jr., Gay, W.L., and Effron, H.M., "Algorithm for the Calculation of the Classical Equations of Motion of an N-Body System," Journal of Mathematical Physics, v. 10, No. 7, July 1969.
14. Vine, G.L., Computer Simulation of Copper and Tungsten Crystal Dynamics With Vacancies and Interstitials, M.S. Thesis, Naval Postgraduate School, Monterey, California 1971.
15. Levy, N.D., Computer Simulation of the Sputtering Process, M.S. Thesis, Naval Postgraduate School, Monterey, California, 1965.
16. Johnson, J.P., Calculation of Surface Binding Energies by Computer Simulation of the Sputtering Process, M.S. Thesis, Naval Postgraduate School, Monterey, California, 1966.
17. Effron, H.M., Correlation of Argon-Copper Sputtering Mechanisms With Experimental Data Using a Digital Computer Simulation Technique, M.S. Thesis, Naval Postgraduate School, Monterey, California 1967.
18. Moore, W.L., Digital Computer Simulation of Xenon Ions Channeling in the (100) Tungsten Channel at Various Lattice Temperatures, M.S. Thesis, Naval Postgraduate School, Monterey, California 1969.
19. Harrison, D.E., Jr., unpublished research.
20. Girifalco, L.A., Wizer, V.G., "Application of the Morse Potential Function to Cubic Metals," The Physical Review, v. 114, No. 3, p. 687-690, l May 1959.

No. Copies

1. Defense Documentation Center
Camer on Station
Alexandria, Virginia 22314
2. Library, Code 0212 2
Naval Postgraduate School
Monterey, California 93940
3. Professor D.E. Harrison, Jr. 3
Department of Physics, Code 61Hx Naval Postgraduate School Monterey, California 93940
4. Captain James A. Tankovich 1C/O Mr. Delbert H. Bays
Box 74
Gatesville, North Carolina 27938

Security classification of tille, body of abstract and indexing annotation must be ontered when the overall report is classified) RIGINATING AC TIVITY (Corporate author)
val Postgraduate School interey, California 93940

2a. REFORT SECURITY CLASSIFICATION Unclassified
2b. GROUP

REPORT TITLE
cmputer Simulation of Split Interstitial Equilibrium Positions and Binding mergies in a Tungsten Crystal

OESCRIPTIVENOTES (TyPE of report and. inclusive dates)
ister's Thesis, June 1972
AUTHOR(S) (First namo, middle initial, last namo)
ames Anthony Tankovich

| REPORT DATE une 1972 | 7e. TOTAL NO. OFPAGES 69 | 7b. NO. OF REFS 20 |
| :---: | :---: | :---: |
| CONTRACT OR GRANT NO. - PROJECT NO. | 9a. ORIGINATOR'S REPORT NUMBERISI | |
| - | 96. OTHER REPORT NO(S) (Any other numbers that may bo assigned this report) | |

DISTRIBUTION STATEMENT
lpproved for public release; distribution unlimited.
12. SPONSORING MILITARY ACTIVITY

Naval Postgraduate School Monterey, California 93940

Computer simulations were performed to locate the equilibrium positions and binding energies of interstitial He, Ne, Ar, Kr, and Xe in a tungsten interstitial. Three noccupies that site and form what is called a split to each lattice site tested. The distance of the impurity atom from the site was seen to vary roughly inversely with its mass, and the displace of the lattice atom increased with the mass of the impurity atom. The foreign atom in its interstitial position was tested to determine the minimum initial kinetic energy needed to escape the lattice, as well as the optimum escape direction. The minimum energy may be interpreted to be the binding energy of the cefect. A comparison of experimental binding energies from Kornelsen and Sinha and simulated binding energies indicates the model gives realistic results.

Unclassified
Security Classification
Implanted atoms
Interstitial atoms
Simulation
Defect binding energy

32768002054520 DUDLEY KNOX LIBRARY

